Abstract

We consider parabolic partial differential equations of Lotka-Volterra type, with a non-local nonlinear term. This models, at the population level, the darwinian evolution of a population; the Laplace term represents mutations and the nonlinear birth/death term represents competition leading to selection. Once rescaled with a small diffusion, we prove that the solutions converge to a moving Dirac mass, this can be interpreted as well separated populations. The velocity and weights cannot be obtained by a simple expression, e.g., an ordinary differential equation. We show that they are given by a constrained Hamilton-Jacobi equation. This extends several earlier results to the parabolic case and to general nonlinearities. Technical new ingredients are a BV estimate in time on the non-local nonlinearity, a characterization of the concentration point (in a monomorphic situation) and, surprisingly, some counterexamples showing that jumps on the Dirac locations are indeed possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.