Abstract

The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the formfactors of the interaction on the phase diagram of quark matter. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state under the condition of β-equilibrium and charge neutrality. We calculate the quark star configurations by solving the Tolman–Oppenheimer–Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of Δ Mc 2∼10 53 erg. We find that this energy could not serve as an engine for explosive phenomena since the phase transition is not first order. Contrary to naive expectations the mass defect increases when for a given temperature we neglect the possibility of diquark condensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.