Abstract

Chemisorption of an O2 molecule on a Ag surface is studied theoretically with the use of the dipped adcluster model (DAM). Electron correlations in low-lying surface states and electron-transferred states from bulk metal, which are shown to be very important, are described by the symmetry adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) method. Side-on geometries are used, different from the (bent) end-on geometries studied previously. Potential curves for the O2 approaching and dissociating processes are investigated with the use of Ag2O2 and Ag4O2 adclusters. For the occurrence of chemisorption, the electron transfer from bulk metal to the adcluster, and the electrostatic image force are important, which cannot be treated by the conventional cluster model. Two different molecular adsorption states are obtained from the calculations for the Ag2O2 adcluster, namely superoxide (O2−) and peroxide (O22−) species and the corresponding adsorption energies are calculated to be 5.5 and 17.8 kcal/mol, respectively, which compare well with the experimental value 9.2–9.3 kcal/mol. The O–O stretching frequencies of these species are in good agreement with the experimental values. From the calculations for the Ag4O2 adcluster, the potential minima corresponding not only to the molecular adsorption, but also to the dissociative adsorption are obtained. The dissociative adsorption is shown to be led from the peroxide. The geometry of the dissociative O− is at the bridge site on a silver surface and the calculated Ag–O bond distance of 2.16 Å agrees well with the experimental value 2.06–2.17 Å. The dissociative adsorption energy is estimated to be 44.0–61.4 kcal/mol, which is compared with the experimental value 40.8–44.0 kcal/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.