Abstract

AbstractCarrier‐selective contact is a fundamental issue for solar cells. For silicon heterojunction (SHJ) solar cells, it is important to improve hole transport because of the low doping efficiency of boron in amorphous silicon and the barrier stemming from valence band offset. Here, we develop a carbon dioxide (CO2) plasma treatment (PT) process to form dipoles and defect states. We find a dipole moment caused by longitudinal distribution of H and O atoms. It improves hole transport and blocks electron transport and thus suppresses carrier recombination. In the meantime, the CO2 PT process also results in defect states, which reduce passivation performance but improve hole hopping in the intrinsic amorphous layer. As a balance, an appropriate CO2 PT process at the i/p interface increases fill factor and power conversion efficiency of SHJ solar cells. We emphasize, based on sufficient evidences, this work finds a distinct role of the CO2 plasma in SHJ solar cells opposed to reported mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.