Abstract

Triboelectric nanogenerators (TENGs) have been demonstrated as an effective way to harvest mechanical energy to drive small electronics. The density of triboelectric charges generated on contact surfaces between two distinct materials is a critical factor for dictating the output power. We demonstrate an approach to effectively tune the triboelectric properties of materials by taking advantage of the dipole moment in polarized polyvinylidene fluoride (PVDF), leading to substantial enhancement of the output power density of the TENG. The output voltage ranged from 72 V to 215 V under a constant contact force of 50 N. This work not only provides a new method of enhancing output power of TENGs, but also offers an insight into charge transfer in contact electrification by investigating dipole-moment-induced effects on the electrical output of TENGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.