Abstract

In this article the dynamics of photodetachment from closed shell anion in the presence of two color (bichromatic) laser field have been explored in the context of polar environmental situation. The electronic states of halide ions are modeled by a one dimensional Hamiltonian with a potential V(x) = −V0e. The two parameters V0 and σ are fixed by requiring V(x) to reproduce the experimentally observed ground state ionization energy of the halide ion concerned. The potential so generated are shown to support only one bound state. The time-dependent Fourier grid Hamiltonian method is used to follow the detachment dynamics with fairly high intensities of light. The environmental effects on the dynamics are sought to be modeled by two ways i) allowing the well depth (V0) to fluctuate randomly V0(t) = V0[1+ΔVR(t)]; R(t) randomly fluctuates between +1 and −1 with time, when ΔV (strength of fluctuation) is fixed and ii) in the presence of perturbation produced by a neighboring solvent dipole, which changes the effective potential. The detachment rate constant is studied as a function of important system parameters of the used light field. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.