Abstract

Charge transfer (CT) and charge transport (CTr) are at the core of life-sustaining biological processes and of processes that govern the performance of electronic and energy-conversion devices. Electric fields are invaluable for guiding charge movement. Therefore, as electrostatic analogues of magnets, electrets have unexplored potential for generating local electric fields for accelerating desired CT processes and suppressing undesired ones. The notion about dipole-generated local fields affecting CT has evolved since the middle of the 20th century. In the 1990s, the first reports demonstrating the dipole effects on the kinetics of long-range electron transfer appeared. Concurrently, the development of molecular-level designs of electric junctions has led the exploration of dipole effects on CTr. Biomimetic molecular electrets such as polypeptide helices are often the dipole sources in CT systems. Conversely, surface-charge electrets and self-assembled monolayers of small polar conjugates are the preferred sources for modifying interfacial electric fields for controlling CTr. The multifaceted complexity of such effects on CT and CTr testifies for the challenges and the wealth of this field that still remains largely unexplored. This review outlines the basic concepts about dipole effects on CT and CTr, discusses their evolution, and provides accounts for their future developments and impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call