Abstract

We propose a dipole array antenna assisted Doppler spread compensator with maximum ratio combining (MRC) diversity for mobile reception by a digital television terrestrial broadcasting receiver. Although OFDM (Orthogonal Frequency Division Multiplexing), used for the physical layer standard of digital terrestrial television broadcasting (DTTB), is robust to multi-path delay spreading thanks to its long symbol interval, it is sensitive to Doppler spread. OFDM itself cannot mitigate the performance degradation due to fading unless error correction coding is also used. Furthermore, although a Doppler spread compensator based on a linear array antenna has already been proposed, it has problems concerning the mutual coupling effect and polarization mismatch between the transmitter and receiver antennas. The proposed dipole antenna array assisted Doppler spread compensator is not only capable of mitigating both Doppler and fading phenomena, but also of efficiently receiving horizontally polarized radio waves. Computer simulation results showed that the proposed scheme outperforms the conventional monopole array assisted Doppler spread compensator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.