Abstract
A photonic band gap structure made from periodic arrays of conducting dipoles and tripoles on a dielectric is presented. Using the proposed structures, several example devices have been demonstrated for microstrip resonators and filters as well as patch antennas. Measured and predicted frequency responses of a microstrip line using a dual dipole metallodielectric photonic bandgap (MPBG) structure show a 40% band width centred at 10 GHz. A planar microstrip resonator using a dipole MPBG shows a slower wave performance and a higher Q factor when compared with the conventional half-wavelength resonator. Three patch antenna designs on different dielectric constant substrates using a tripole MBPG produce better return loss, higher boresight gains (up to 3 dB) and smoother radiation patterns as a result of surface wave suppression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.