Abstract

We present the first study of dipole and quadrupole moments of liquid water calculated using coupled cluster/molecular mechanics (CC/MM) methods. CC/MM methods are used to calculate the total dipole moment of the water dimer and the results are compared to the corresponding ab initio quantum mechanical calculations. For liquid water we find that the introduction of polarization effects are very important for an accurate determination of dipole and quadrupole moments. Furthermore, we find that neglecting the correlation effects in the quantum mechanical part of the system leads to an overestimation of the interaction between the two sub-systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.