Abstract

Dipolarization fronts (DFs) are frequently detected in the Earth's magnetotail from XGSM = −30 RE to XGSM = −7 RE. How these DFs are formed is still poorly understood. Three possible mechanisms have been suggested in previous simulations: (1) jet braking, (2) transient reconnection, and (3) spontaneous formation. Among these three mechanisms, the first has been verified by using spacecraft observation, while the second and third have not. In this study, we show Cluster observation of DFs inside reconnection diffusion region. This observation provides in situ evidence of the second mechanism: Transient reconnection can produce DFs. We suggest that the DFs detected in the near‐Earth region (XGSM > −10 RE) are primarily attributed to jet braking, while the DFs detected in the mid‐ or far‐tail region (XGSM < −15 RE) are primarily attributed to transient reconnection or spontaneous formation. In the jet‐braking mechanism, the high‐speed flow “pushes” the preexisting plasmas to produce the DF so that there is causality between high‐speed flow and DF. In the transient‐reconnection mechanism, there is no causality between high‐speed flow and DF, because the frozen‐in condition is violated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.