Abstract

The dynamic behavior of polar molecules in egg phosphatidylcholine (PC) bilayers has been studied using a membrane fluorescent probe, 4″-dimethylaminochalcone (DMAC). Time and spectrally resolved fluorescence spectroscopy of DMAC incorporated in PC liposomes, as compared to studies of the probe in organic solvents, shows the existence of two independent populations, associated with different extent and speed of dipolar solvent relaxation. The first DMAC population represents approximately 69% of the fluorescence-emitting molecules, has a short fluorescence decay time (0.32 ns) and undergoes Stokes shift of 80 nm. The remaining 31% fraction of DMAC molecules has a decay time of 0.74 ns and undergoes a high (106 nm) Stokes shift. A fraction of the shift, ca. 24 nm for the first and 46 nm for the second population, is attributed to the fast (<0.1 ns) rotational relaxation of nearby dipolar molecules, which might be water. This two-state model accounts well for the detailed fluorescence properties of DMAC in egg PC, i.e. its broadened steady-state spectrum, its average fluorescence quantum yield and its complex wavelength-dependent fluorescence decays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.