Abstract

By using dielectric spectroscopy in a broad range of temperatures and frequencies, we have investigated dipolar relaxations, the dc conductivity, and the possible occurrence of polar order in AgCN. The conductivity contributions dominate the dielectric response at elevated temperatures and low frequencies, most likely arising from the mobility of the small silver ions. In addition, we observe the dipolar relaxation dynamics of the dumbbell-shaped CN- ions, whose temperature dependence follows the Arrhenius behavior with a hindering barrier of 0.59eV (57 kJ/mol). It correlates well with a systematic development of the relaxation dynamics with the cation radius, previously observed in various alkali cyanides. By comparison with the latter, we conclude that AgCN does not exhibit a plastic high-temperature phase with free rotation of the cyanide ions. Instead, our results indicate that a phase with quadrupolar order, revealing dipolar head-to-tail disorder of the CN- ions, exists at elevated temperatures up to the decomposition temperature, which crosses over to long-range polar order of the CN dipole moments below about 475K. Dipole ordering was also reported for NaCN and KCN, and a comparison with these systems suggests a critical relaxation rate of 105-107Hz, marking the onset of dipolar order in the cyanides. The detected relaxation dynamics in this order-disorder type polar state points to glasslike freezing below about 195K of a fraction of non-ordered CN dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.