Abstract

Amphidynamic crystals, which possess crystallinity and support dynamic behaviours, are very well suited to the exploration of emergent phenomena that result from the coupling on the dynamic moieties. Here, dipolar rotors have been embedded in a crystalline metal-organic framework. The material consists of Zn(II) nodes and two types of ditopic bicyclo[2.2.2]octane-based linkers-one that coordinates to the Zn clusters through two 1,4-aza moieties, and a difluoro-functionalized derivative (the dipolar rotor) that coordinates through linked 1,4-dicarboxylate groups instead. Upon cooling, these linkers collectively order as a result of correlated dipole-dipole interactions. Variable-temperature, frequency-dependent dielectric measurements revealed a transition temperature Tc = 100 K, when a rapidly rotating, dipole-disordered, paraelectric phase transformed into an ordered, antiferroelectric one in which the dipole moments of the rotating linkers largely cancelled each other. Monte Carlo simulations on a two-dimensional rotary lattice showed a ground state with an Ising symmetry and the effects of dipole-lattice and dipole-dipole interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.