Abstract

In this paper, magnetic dipolar-induced spin dephasing is considered for localized electronic triplet spin states in solids. Using a projection operator formalism, expressions are derived to describe the Hahn-echo decay behavior for an ensemble of triplet spins at zero- and low-magnetic field strengths. For triplet states localized on non-axially symmetric molecules (or defects) it is shown that, at zero field, cross-relaxation with rapidly relaxing spins is essential in the dipolar-induced dephasing process; secular spin-spin interactions become important only in the presence of a static magnetic field or hyperfine couplings. The results are used to relate experimental dephasing data previously obtained for photoexcited triplet states of axially- and non-axially symmetric defects in CaO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.