Abstract

The conditions for observing the Zeeman spin splitting compensation in an exciton Bose gas have been investigated. The magnetoluminescence of spatially indirect, dipolar excitons in a 25-nm-wide GaAs/AlGaAs quantum well upon their accumulation in a lateral electrostatic trap has been studied in the Faraday geometry. The critical magnetic field Bcr below which the spin (paramagnetic) splitting of the luminescence line for a heavy-hole exciton at the trap center is almost completely compensated due to the exchange interaction in a dense Bose gas has been found to increase linearly with exciton concentration in qualitative agreement with the theory. Using a potential trap is fundamentally important. Incomplete compensation is observed in a homogeneous photoexcitation spot for dipolar excitons: the splitting is considerably smaller than that for a spatially direct exciton but differs noticeably from zero. The spin splitting compensation effect is observed only under neutral charge balance conditions—there is no Zeeman splitting suppression in a charged quantum well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.