Abstract

We develop a nonperturbative theoretical framework to treat collisions with generic anisotropic interactions in quasi-one-dimensional geometries. Our method avoids the limitations of pseudopotential theory and allows us to include accurately long-range anisotropic interactions. For ultracold dipolar collisions in a harmonic waveguide we predict dipolar confinement-induced resonances (DCIRs) which are attributed to different angular momentum states. The analytically derived resonance condition reveals in detail the interplay of the confinement with the anisotropic nature of the dipole-dipole interactions. The results are in excellent agreement with ab initio numerical calculations confirming the robustness of the presented approach. The exact knowledge of the positions of DCIRs may pave the way for the experimental realization of, e.g., Tonks-Girardeau-like or super-Tonks-Girardeau-like phases in effective one-dimensional dipolar gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call