Abstract

Dipolar and quadrupolar resonance wavelengths of SiO2/Au nanoshell surface plasmons are designed at 560 nm to enhance the light trapping in thin film solar cells. In order to quantitatively describe the light trapping effect, the forward-scattering efficiency (FSE) and the light trapping efficiency (LTE) are proposed by considering the light scattering direction of SiO2/Au nanoshells. Based on the Mie theory, the FSE and the LTE are calculated for SiO2/Au nanoshells of different dimensions, and the contributions of the dipolar and quadrupolar modes to the light trapping effect are analyzed in detail. When the surface coverage of nanoshells is 5%, the LTEs are 21.7% and 46.9% for SiO2/Au nanoshells with sizes of (31 nm, 69 nm) and (53 nm, 141 nm), respectively. The results indicate that the SiO2/Au nanoshell whose quadrupolar mode peak is designed to the strongest solar energy flux density of the solar spectrum facilitates the further enhancement of light harvesting in thin film solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.