Abstract

Reconstructing a robust species phylogeny and disentangling the evolutionary and biogeographic history of the gymnosperm genus Ephedra, which has a large genome and rich polyploids, remain a big challenge. Here we reconstructed a transcriptome-based phylogeny of 19 diploid Ephedra species, and explored evolutionary reticulations in this genus represented by 50 diploid and polyploid species, using four low-copy nuclear and nine plastid genes. The diploid species phylogeny indicates that the Mediterranean species diverged first, and the remaining species split into three clades, including the American species (Clade A), E. rhytidosperma, and all other Asian species (Clade B). The single-gene trees placed E. rhytidosperma sister to Clade A, Clade B, or Clades A + B in similar proportions, suggesting that radiation and gene flow likely occurred in the early evolution of Ephedra. In addition, reticulate evolution occurred not only among the deep nodes, but also in the recently evolved South American species, which further caused difficulty in phylogenetic reconstruction. Moreover, we found that allopolyploid speciation was pervasive in Ephedra. Our study also suggests that Ephedra very likely originated in the Tethys coast during the late Cretaceous, and the South American Ephedra species have a single origin by dispersal from Mexico or North America.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.