Abstract

AbstractWe studied the cell kill induced by granulocyte-macrophage colony-stimulating factor (GM-CSF ) fused to Diphtheria Toxin (DT-GM-CSF ) in acute myeloid leukemia (AML) samples and in populations of normal primitive hemopoietic progenitor cells. AML samples from three patients were incubated in vitro with 100 ng/mL DT-GM-CSF for 48 hours, and AML cell kill was determined in a proliferation assay, a clonogenic assay colony-forming unit-AML (CFU-AML) and a quantitative long-term bone marrow (BM) culture ie, the leukemic-cobblestone area forming cell assay (L-CAFC). To measure an effect on cells with in vivo leukemia initiating potential DT-GM-CSF exposed AML cells were transplanted into immunodeficient mice. In two out of three samples it was shown that all AML subsets, including those with long-term abilities in vivo (severe combined immunodeficient mice) and in vitro (L-CAFC assay) were reduced in number by DT-GM-CSF. Cell kill induced by DT-GM-CSF could be prevented by coincubation with an excess of GM-CSF, demonstrating that sensitivity to DT-GM-CSF is specifically mediated by the GM-CSF receptor. Therefore, binding and internalization of GM-CSF probably occur in immature AML precursors of these two cases of AML. The third AML sample was not responsive to either GM-CSF or DT-GM-CSF. The number of committed progenitors of normal bone marrow (burst-forming unit-erythroid, colony-forming unit granulocyte- macrophage, and cobble stone area forming cell [CAFC] week 2) and also the number of cells with long-term repopulating ability, assayed as week 6 CAFC, were unchanged after exposure to DT-GM-CSF (100 ng/mL, 48 hours). These studies show that DT-GM-CSF may be used to eliminate myeloid leukemic cells with long-term potential in vitro and in immunodeficient mice, whereas normal hemopoietic stem cells are spared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.