Abstract

Preliminary ATLAS and CMS results from the first 13 TeV LHC run have encountered an intriguing excess of events in the diphoton channel around the invariant mass of 750 GeV. We investigate a possibility that the current excess is due to a heavy resonance decaying to light metastable states, which in turn give displaced decays to very highly collimated $e^+e^-$ pairs. Such decays may pass the photon selection criteria, and successfully mimic the diphoton events, especially at low counts. We investigate two classes of such models, characterized by the following underlying production and decay chains: $gg \to S\to A'A'\to (e^+e^-)(e^+e^-)$ and $q\bar q \to Z' \to sa\to (e^+e^-)(e^+e^-)$, where at the first step a heavy scalar, $S$, or vector, $Z'$, resonances are produced that decay to light metastable vectors, $A'$, or (pseudo-)scalars, $s$ and $a$. Setting the parameters of the models to explain the existing excess, and taking the ATLAS detector geometry into account, we marginalize over the properties of heavy resonances in order to derive the expected lifetimes and couplings of metastable light resonances. We observe that in the case of $A'$, the suggested range of masses and mixing angles $\epsilon$ is within reach of several new-generation intensity frontier experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.