Abstract

Investigation of atomically precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects on Au catalysis. Herein, we explored the catalytic behavior of a newly synthesized Au22(L8)6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO2, CeO2, and Al2O3. Stability of the supported Au22 nanoclusters was probed structurally by in situ extended X-ray absorption fine structure (EXAFS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and their ability to adsorb and oxidize CO was investigated by IR absorption spectroscopy and a temperature-programmed flow reaction. Low-temperature CO oxidation activity was observed for the supported pristine Au22(L8)6 nanoclusters without ligand removal. Density functional theory (DFT) calculations confirmed that the eight uncoordinated Au sites in the intact Au22(L8)6 nanoclusters can chemisorb both CO and O2. Use of isotopically labeled O2 demonstrated that the reaction pathway occurs mainly through a redox mechanism, consistent with the observed support-dependent activity trend of CeO2 > TiO2 > Al2O3. We conclude that the uncoordinated Au sites in the intact Au22(L8)6 nanoclusters are capable of adsorbing CO, activating O2, and catalyzing CO oxidation reaction. This work is the first clear demonstration of a ligand-protected intact Au nanocluster that is active for gas-phase catalysis without the need of ligand removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call