Abstract

The N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors are involved in the electrical and behavioural generalization of epileptiform activity within the brain. In rats, both competitive and non-competitive NMDA antagonists induce three dose-dependent stages of EEG patterns: 1) increase in cortical desynchronization periods; 2) increase in amplitude of cortical high frequency (20-30 Hz), low voltage (30-50 microV) background activity; 3) appearance of cortical slow (2-3 Hz) wave-sharp wave complexes. These EEG changes are accompanied by stimulatory-depressive behavioural effects such as stereotypy (circling, head weaving) and ataxia. In the present study, the influence of the prototypic anticonvulsant diphenylhydantoin (DPH) has been tested on the EEG and behavioural effects induced by the non-competitive NMDA antagonists phencyclidine (PCP) and dizocilpine (MK-801) and by the competitive NMDA antagonist cis-4-phosphonomethyl-2-piperidine-carboxylic acid (CGS 19755). Even though DPH (up to 100 mg/kg IP) did not markedly affect basal cortical EEG activity, at doses of 10-100 mg/kg IP it potentiated all the EEG effects induced by the NMDA antagonists. These data support involvement of NMDA neurotransmission in the pharmacological effects of DPH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.