Abstract
Molecular hybridization between diphenyl urea and benzylidene acetohydrazide was adopted for the design of a new series of FGFR-1 targeting cancer. The designed series was synthesized and submitted to NCI-USA to be screened for their growth inhibitory activity on NCI cancer cell lines. Some of the synthesized hybrids displayed promising growth inhibitory activity on NCI cancer cell lines with a mean GI% between 70.39% and a lethal effect. Compounds 9a, 9i, 9j, and 9n-p were further selected for a five-dose assay and all the tested candidates showed promising antiproliferative activity with GI50 reaching the submicromolar range. Encouraged by the potent activity of 9a on colon cancer on the one hand and the well-known overexpression of FGFR-1 in it on the other hand, it was further selected as a representative example to be evaluated for its mechanism on the cell cycle and apoptosis of HCT116 cell line. Interestingly, 9a was found to pause the cell cycle of the HCT116 cell line at the G1 phase and induced late apoptosis. In parallel, all the synthesized hybrids 9a-p were examined for their potential to inhibit FGFR-1 at 10 µM. Compounds 9a, 9g, 9h, and 9p were found to have potent inhibitory activity with % inhibition = 63.04%, 58.31%, 60.87% and 79.84%, respectively. Molecular docking simulation of 9a in the binding pocket of FGFR-1 confirms its capability to achieve the characteristic interactions of the type II FGFR-1 inhibitors. Exploration of the ADME properties of 9a-p by SwissADME web tool proved their satisfactory physicochemical properties for the discovery of new anticancer hits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.