Abstract

Diabetes mellitus (DM) is a serious disease affecting human health. Numerous attempts have been made to develop safe and effective new antidiabetic drugs. Recently, a series of G protein-coupled receptors for free fatty acids (FFAs) have been described and characterized, and small molecule agonists and antagonists of these receptors show considerable promise for managing diabetes and related complications. FFA-activated GPR120 could stimulate the release of glucagon-like peptide-1(GLP-1), which can enhance the glucose-dependent secretion of insulin from pancreatic β cells. GPR120 is a promising target for treating type 2 DM (T2DM). Herein we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which was the first potent and selective GPR120 agonist. Among the designed compounds, 18 f showed excellent GPR120 activation activity and high selectivity for GPR40 in vitro. Compound 18 f dose-dependently improved glucose tolerance in normal mice, and no hypoglycemic side effects were observed at high dose. In addition, compound 18 f increased insulin release and displayed good antidiabetic effect in diet-induced obese mice. Molecular simulations illustrated that compound 18 f could enter the active site of GPR120 and interact with Arg99. Based on these observations, compound 18 f may be a promising lead compound for the design of novel GPR120 agonists to treat T2DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.