Abstract

The design and development of synthetic analogues for the active dicopper(ii) sites of catechol oxidase, with the help of binucleating ligands in particular, is an attractive strategy to generate relevant information on structure–function relationships. Dicopper(ii) complexes of different yet closely related series of reduced Schiff base ligands (N-(2-hydroxybenzyl)-amino acids; N-(2-hydroxybenzyl)-amino amides, N-(2-hydroxybenzyl)-aminomethane or ethanesulfonic acids, and N-(2-hydroxy-5-substituted-benzyl)-cyclopentane or hexanecarboxylic acids) derived from various substituted salicylaldehydes and natural or unnatural amino acids or amides explored as functional models for the Type 3 copper enzyme catecholase oxidase are reviewed in the present paper. The catalytic activity of different series of dicopper(ii) complexes to oxidize the model substrate 3,5-di-tert-butylcatechol to the corresponding 3,5-di-tert-butylquinone is discussed with respect to the various ligand properties such as the length and chelating ability of the amino acid side-arm of the ligands, conformation of the ligand, nature of the donor groups on the amino acid backbone and role of different para-substituents. This article provides a short review summarizing the trend observed in the catecholase activity of different series of dicopper(ii) complexes investigated in our laboratory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call