Abstract

Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline glioma (DMG) are characterised by K27M mutations in histone H3 variants. The major functional consequence is a global loss of the repressive mark H3K27me3, causing a raft of transcriptional changes promoting tumorigenesis, although certain key loci retain trimethylation, such as CDKN2A/B. We recently identified subclonal loss-of-function mutations in the H4 lysine methyltransferase KMT5B to be associated with an enhanced invasion/migration, but the mechanism by which this occurred was unclear. Here we show by ChIP-seq using patient-derived subclonal DIPG models and CRISPR-Cas9 depletion that loss of KMT5B (or KMT5C) causes a paradoxical increase in global levels of H4K20me3 in promoters and regulatory regions, only ablated by knocking out both enzymes. Loss of KMT5B alone further causes loss of the majority of otherwise retained H3K27me3 loci in DIPG cells, although CDKN2A/B itself was spared. De-repression occurred at bivalent loci marked by H3K4me3 and had elevated gene expression by RNAseq; these were significantly enriched for genes involved in chromatin remodelling and invasion/migration, the latter including MMP9/MMP24. Phenotypic assessment of the models in vitro by high-throughput imaging demonstrated significantly increased invasion and migration in association with either KMT5B or KMT5C loss, but not both. Quantitative proteomic assessment of the secretome identified factors by which a minority of KMT5B-deficient cells may signal to promote motility of the neighbouring populations. These data suggest a previously unrecognised trans-histone (H4/H3) interaction in DIPG cells with a potentially profound effect on their diffusely infiltrating phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.