Abstract

Abstract INTRODUCTION: ACVR1 mutations are found in about 25% of patients with diffuse intrinsic pontine glioma (DIPG). Recent work has identified the combination of vandetanib and everolimus as a promising therapeutic approach for these patients. We investigate the predictive power of an AI model integrating clinical and radiomic information to predict ACVR1 mutation. METHODS: This retrospective monocentric study includes 65 patients with known ACVR1 status. Patients were scanned at the diagnosis time with at least one of the four structural MRI modalities (pre- and post-contrast T1, T2, FLAIR) and basic clinical information (age and sex) was collected. Radiomic features were extracted within the tumor region from each modality. For each modality, a recursive feature elimination method was used to select the most relevant features. Inside a leave-one-out framework, up to five logistic regression models were built: one per MRI modality and one for the clinical information. The final prediction for each patient was computed as the mean of the probabilities of ACVR1 mutation for the up to 5 different models. Assigning a different weight to clinical data according to age, (more or less than 10 years old) was also tested. RESULTS: Out of the 65 patients (mean age 7.9±3.7, 15 patients older then 10 years), ACVR1 mutations were identified with a 78% accuracy (sensitivity = 92% and specificity = 75%) in the leave-out-out process. Accounting for the clinical data in the model increase the accuracy to 82% (resp. sensitivity = 86% and specificity = 80%). CONCLUSION: The proposed multi model approach compensates for missing MR modalities while taking advantage of all the available information. Our first results suggest that a dedicated model could be developed for younger patients to improve the prediction. The different models will now be tested using additional data coming from the ongoing multi-centric BIOMEDE trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.