Abstract

In pharmaceutical and biomedical applications, it is imperative to identify chiral molecules. However, colorimetric sensing enantiomers relying on chiral nanozymes is still a major challenge in chirality recognition. Herein, we report a facile and simple strategy to prepare copper nanoparticles (CuNPs) using d-cysteine-d-histidine (DCDH), d-cysteine-l-histidine, and l-cysteine-d-histidine as the capping agents. All of these CuNPs exhibited peroxidase-mimicking activity in 3,3',5,5'-tetramethylbenzidine oxidation and presented chiral selectivity toward 3,4-dihydroxy-d,l-phenylalanine (d,l-DOPA). More importantly, DCDH-modified CuNPs (DCDH@CuNPs) showed higher peroxidase-mimicking catalytic activity in the presence of d-DOPA than l-DOPA. This demonstrates that in the stereoselective recognition CuNPs play the catalytic center role and chiral dipeptide ligands play the inducer role. The insights obtained from this study not only provide information to deeply understand the molecular principles of colorimetric chiral recognition upon CuNPs but also guide the design of dipeptide-based chiral nanozymes toward enantiomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call