Abstract
In underground mining, the dip angle is one of the widely recognized factors that cause the asymmetric deformation of the goaf/stope roof, but characterizing the degree of asymmetric roof deformation is still a challenge. The goal of this research is to try to solve this problem with a theoretical model and numerical method. In an inclined ore seam, the mining load produces both normal and tangential effects on the inclined roof. A theoretical model was developed employing thin plate theory for enabling describe the asymmetric deformation of the roof caused by inclination. The proposed model describes not only the bending deformation state of the roof but also the deformation characteristics. Subsequently, the law of asymmetric deformation of roofs with varying inclinations was presented by numerical method. Under the same conditions, the numerical results of the asymmetric deformation of the roof are consistent with the theoretical results. Finally, the degree of asymmetrical deformation was characterized and quantified by the distance between the maximum subsidence point and the center of the roof. There exist three modes of asymmetric deformation, which are controlled by both dip angle and in-situ stress ratio. The results show that the shear load caused by dip angle is the root cause of asymmetric deformation of the roof. This study provides a theoretical basis for the asymmetric deformation control of the inclined roof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.