Abstract

A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol (∼ 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15° and 30° dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89–93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70–77% for a 15° dip angle and 57–59% for a 30° dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57–60% at the 30° dip angle, which was similar to PCE recovery for injection in the downward flow direction. Lower areal PCE recovery at greater dip angles in either direction of flow was attributed to DNAPL swelling and migration, flood front instabilities and bypassing of the displaced fluid past the extraction wells during the alcohol pre-flood. Additional results demonstrate that the use of an alcohol pre-flood can be beneficial in improving DNAPL recovery in the horizontal orientation, but pre-flooding may reduce areal recovery efficiency in dip-angle orientations. This study also demonstrates the use of theoretical perturbation (fingering) analysis in predicting NAPL recovery efficiency for flooding processes in remediating aquifers with dip angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.