Abstract

BackgroundDiabetic nephropathy (DN) is a serious complication of diabetes mellitus. DN is the main cause of end-stage renal disease (ESRD). SIRT6 becomes the important target of DN. Diosgenin (a monomer from Chinese herbs) is probable to bind to SIRT6. PurposeBased on studies presented in the literature on kidney injuries plus screening for the binding effects of the drug to Sirt6, we aimed to carry out the study to assess the effects of diosgenin involved in improving podocyte damage in the early phase of DN.. MethodsDN model was established in spontaneous diabetic db/db mice. Animal experiment was in two parts. The first part includes four groups consisting of control (Con) group, model (Mod) group, low dose of diosgenin (DL) group and high dose of diosgenin (DH) group. The second part includes four groups consisting of control group, model group, DH+OSS_128167 (OSS, inhibitor of SIRT6) group, MDL800 (agonist of SIRT6) group. MPC5 cell line was selected in cell experiment, which was mainly composed of six groups including Con group, palmitic acid (PA) group, PA+DL group, PA+DH group, PA+DH+OSS group, PA+MDL800 group. Some procedures such as transcriptomics, RT-qPCR and so on were used in the study to explore and verify the mechanism. ResultsThe abnormal changes of mesangial matrix expansion, glomerular basement membrane (GBM) thickness, foot process (FP) width, urine albumin/creatinine (UACR), DESMIN, ADRP, NEPHRIN, PODOCIN, SIRT6 in Mod group were alleviated in DH group rather than DL group in the first part of animal experiment. The effect in DH group could be reversed in DH+OSS group and the same effect was observed in MDL800 group in the second part of animal experiment. The same results were also found in cell experiment. Protein level and mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and Angiopoietin-like-4 (ANGPTL4) were increased in PA group, which could be alleviated in DH group, MDL800 group rather than DH+OSS group. ConclusionsDiosgenin could protect against podocyte injury in early phase of diabetic nephropathy by regulating SIRT6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call