Abstract

We show that Diophantine problem (otherwise known as Hilbert's Tenth Problem) is undecidable over the fields of algebraic functions over the finite fields of constants of characteristic greater than two. This is the first example of Diophantine undecidability over any algebraic field. We also show that the Diophantine class of a holomorphy ring of an above mentioned algebraic function field does not change if the set of primes at which the functions of the ring are allowed to have poles is changed by adding or removing of finitely many primes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.