Abstract
Let f be a polynomial map of the Riemann sphere of degree at least two. We prove that if f has a Siegel disk G on which the rotation number satisfies a diophantine condition, then either the boundary B of G contains a critical point or B is a Lakes of Wada indecomposable continuum with one of the lakes containing a critical point. Consequently, if the boundary B of G has only 2 complementary domains, then B contains a critical point. We also show, without any assumption on the rotation number, that each proper nondegenerate subcontinuum of the boundary B of G is tree-like, and any other bounded complementary domain of B is a preperiodic component of the grand orbit of G. Finally, we establish some conditions under which B contains no periodic point.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.