Abstract

Considerable effort has been spent documenting correlations between dioecy and various ecological and morphological traits for the purpose of testing hypotheses about conditions that favor dioecy. The data analyzed in these studies, with few exceptions, come from local floras, within which it was possible to contrast the subsets of dioecious and nondioecious taxa with regard to the traits in question. However, if there is a strong phylogenetic component to the presence or absence of dioecy, regional sampling may result in spurious associations. Here, we report results of a categorical multivariate analysis of the strengths of various associations of dioecy with other traits over all flowering plants. Families were scored for presence of absence of monoecy or dioecy, systematic position, numbers of species and genera, growth forms, modes of pollination and dispersal, geographic distribution, and trophic status. Seven percent of angiosperm genera (959 of 13,500) contain at least some dioecious species, and ≈6% of angiosperm species (14,620 of 240,000) are dioecious. The most consistent associations in the data set relate the presence of dioecy to monoecy, wind or water pollination, and climbing growth. At both the family and the genus level, insect pollination is underrepresented among dioecious plants. At the family level, a positive correlation between dioecy and woody growth results primarily from the association between dioecy and climbing growth (whether woody or herbaceous) because neither the tree nor the shrub growth forms alone are consistently correlated with a family's tendency to include dioecious members. Dioecy appears to have evolved most frequently via monoecy, perhaps through divergent adjustments of floral sex ratios between individual plants. Monoecy itself is related to abiotic pollination and climbing growth as revealed by multivariate analysis. Dioecy and monoecy are concentrated in the less advanced superorders of Thorne (1992) and subclasses of Cronquist (1988). The frequency of dioecy found in a local flora therefore reflects the level of dioecy in its particular pool of families as much as, or more than, local selective factors. The positive associations of dioecy with abiotic pollination and monoecy are related to floral developmental and morphological attributes, as is the negative association with bird and bat pollination; the positive association of dioecy with climbing growth is tentatively explained in terms of differential selection for optimal resource allocation to sexual function. If rapid upward growth is at a premium in climbers and if fruit set at least temporarily inhibits growth or requires the production of thicker, more slowly growing stems to support heavy fruits, it might be advantageous to postpone femaleness. If the effect is strong, this may favor male plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call