Abstract

The simultaneous Q-Switching and Mode Locking (QML) regime provides the generation of relatively high peak power picosecond pulses train with energies of a few μJ each in a simple resonator. The critical review of QML methods and results including our investigations is given in the first part of presentation. The application of several types of saturable crystalline absorbers (Cr 4+ :YAG, V 3+ :YAG, LiF, GaAs) leads to chaotic, partial QML effect, with less than 100% modulation depth in principle. The fully modulated efficient QML laser was demonstrated in the next part. The acousto-optic cell playing a double role of Q-switch and Mode Locker was located near flat output coupler. The two folding mirrors were mounted on the translation stages for matching the resonance frequency of the cavity to the radio frequency of acousto-optic modulator. The QML pulses with envelope durations of 100-150 ns and 100% modulation depth were observed for wide range of pump powers and repetition rates. In the preliminary experiments up to 3 W of output average power, 100μJ of the envelope energy, having approximately 5-8 mode locked pulses were achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call