Abstract

A model to account for the shortening of the relativistic magnetron microwave pulse length based on radial cathode plasma motion is put forth and corroborated with measurements. If the dense, conducting, cathode plasma (and not the cathode itself) sets the diode electrostatic and microwave boundary conditions, its motion changes the magnetron resonance condition. Time varying microwave power envelopes and frequencies are both expected and observed. Based on the cathode plasma expansion rate, the main plasma ton constituent is inferred to be hydrogen. A magnetron experiment to defeat the pulse-shortening mechanism by heating the resonator successfully lengthened the pulse from 100 to 115 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.