Abstract

Aflatoxin contamination of crops is a serious problem worldwide. Utilization of aflatoxin production inhibitors is attractive, as the elucidation of their modes of action contributes to clarifying the mechanism of aflatoxin production. Here, we identified mitochondrial protease ClpP as the target of dioctatin, an inhibitor of aflatoxin production of Aspergillus flavus. Dioctatin conferred uncontrolled caseinolytic capacity on ClpP of A.flavus and Escherichia coli. Dioctatin-bound ClpP selectively degraded mitochondrial energy-related proteins invitro, including a subunit of respiratory chain complex V, which was also reduced by dioctatin in a ClpP-dependent manner invivo. Dioctatin enhanced glycolysis and alcohol fermentation while reducing tricarboxylic acid cycle metabolites. These disturbances were accompanied by reduced histone acetylation and reduced expression of aflatoxin biosynthetic genes. Our results suggest that dioctatin inhibits aflatoxin production by inducing ClpP-mediated degradation of mitochondrial energy-related components, and that mitochondrial energy metabolism functions as a key determinant of aflatoxin production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call