Abstract

High-fidelity production of a single self-assembled species in competition with others relies on achieving strong chelate cooperativities, which can be quantified by the effective molarity parameter. Therefore, supramolecular systems displaying very high effective molarities are reliably formed in a wide range of experimental conditions and exhibit "all-or-none" phenomena, meaning that the assembly is either fully formed or fully dissociated into the corresponding monomeric components. We summarize here our efforts in the study and characterization of one of these synthetic systems exhibiting record chelate cooperativities: the self-assembly of rod-like dinucleoside molecules into tetrameric macrocycles through hydrogen-bonding Watson-Crick interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.