Abstract

Amino acid bridged dicatechol ligands 3a-e-H4 form dinuclear double-stranded coordination compounds [(3a-e)2Ti2(OCH3)2]2- with titanium(IV) ions. Due to the directionality of the ligands, the chirality of the strand, and the chiral complex units, up to seven isomers, I-VII, can be obtained for the double-stranded complexes of ligands 3a-e-H4. The composition of the mixture of isomeric compounds in solution is strongly dependent on the conditions of complex formation. Under thermodynamic control, only a few isomers are obtained, one of which is the major component of the mixture. X-ray structure analyses were performed for K2[(3b)2Ti2(OH)2] and K2[(3d)2Ti2(OH)2] (type I), and for the meso complex Na2[(3e)(3e')Ti2(OCH3)2]. A conformational analysis that uses Ramachandrans method revealed that the conformation of the amino acids in the ligand strands can be compared with those found for amino acids in helical peptide structures. The most favored isomer of [(3)2Ti2(OCH3)2]2- appears to be of type I, with the catecholamide unit located at the N terminus of the ligand strand that binds to a lambda-configurated titanium(IV) complex unit and the dihydroxybenzyl group at the C terminus that coordinates to a delta-configurated titanium(IV) complex unit. The lambda configuration at the N terminus induces the conformation of a right-handed helix in the amino acid residue, while the delta configuration induces the less favored left-handed helix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call