Abstract

The cellular processing of three fluorescent N, N'-bis(aminoalkyl)-1,4-diaminoanthraquinones (aminoalkyl=2-aminoethyl, 3-aminoprop-1-yl or 4-aminobut-1-yl) and their dinuclear platinum complexes in A2780 human ovarian carcinoma cells with acquired resistance to cisplatin has been monitored over time by time-lapse fluorescence microscopy. The results were compared with the previously reported observations in the parent A2780 cell line. The cellular distribution pattern for the free ligands is similar in sensitive and resistant cells, whereas significant differences in cellular distribution were observed in the case of the platinum complexes. In the cisplatin-resistant cell line the platinum complexes were found to be sequestrated in acidic vesicles in the cytosol from the very beginning of the incubation. This sequestration was not observed in the case of sensitive cells. Platinum accumulation in vesicles possibly presents a mechanism of resistance to platinum complexes. This mechanism appears to be unrelated to the mechanism of deactivation of platinum compounds by glutathione. Encapsulation of the dinuclear platinum complexes in lysosomal vesicles provides a plausible explanation for the decreased activity of these compounds in the resistant cell line, as compared to the sensitive cell line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.