Abstract

Dinuclear gold(i) dithio- and diselenophosph(in)ate complexes were prepared to serve as precursors for subsequent oxidative addition (OA) chemistry following reaction with mild oxidant iodine, I2. The new OA products circumvented the formation of the expected dinuclear Au(ii) complexes, but instead formed novel chelating mononuclear square-planar gold(iii) products of the type [AuI2{E2PR2}] (R = (CH2)2Ph; E = S, 2; E = Se, 3) and [AuI2{Se2P(OR)2}] (R = Et, 4; (i)Pr, 5) directly. We further demonstrate that this process is chemically reversible as all the Au(iii) complexes undergo chemical reductive elimination to the starting dinuclear Au(i) complexes in the presence of SnI2 as determined by (119)Sn and (31)P NMR. The complexes (2-5) were all prepared from the reaction between I2 and the corresponding dinuclear gold(i) precursor material. All new complexes were characterized by (1)H, (31)P, (77)Se (for E = Se) NMR, infrared spectroscopy, elemental analysis and single crystal X-ray diffraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.