Abstract

The tridentate ligand N-methyl-N,N-bis(2-pyridylmethyl)amine (L) has been employed to synthesize a dinuclear Co(II)Co(III) mixed-valence complex containing μ-methoxo and μ-carboxylato bridging ligands, [LCo(II)(μ-carboxylato)bis(μ-methoxo)Co(III)L](ClO(4))(2). In this complex, the two pseudo-octahedral Co centers have an identical ligand environment, yet the average Co-N and Co-O bond distances at the two Co ions differ significantly. Electrochemical, spectroscopic, and magnetic susceptibility measurements confirm that it belongs to a localized Class II mixed-valence system, despite the presence of a short Co···Co distance of 3.021 Å. Oxidation of this Co(II)Co(III) complex leads to formation of the corresponding Co(III)Co(III) complex that was characterized structurally and spectroscopically. In addition, dinuclear and trinuclear μ-hydroxo Co(III) complexes have been obtained in the presence of phosphate anions and absence of methanol, respectively, suggesting that an additional bridging ligand is needed to stabilize the Co(III)bis(μ-hydroxo)Co(III) fragment. Moreover, the ability of the mixed-valence Co(II)Co(III) complex and the three related Co(III) complexes to electrocatalytically oxidize water was also investigated. The observed limited water oxidation catalytic ability for these systems suggests that a multinuclear Co cluster and/or presence of O-rich ligands may be needed for the generation of efficient molecular Co-based water oxidation catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.