Abstract
One of Turkey's most important neotectonic structures East Anatolian Fault Zone (EAFZ), has occurred many earthquakes. One of these earthquakes, the 6.8 Mw Sivrice-Elazig earthquake dated January 24, 2020, was felt in various provinces, especially in Elazig and Malatya, and caused the death of 44 people. It is critical to investigate this earthquake, which caused significant economic damage, and to identify possible hazards on the EAFZ. One of the remote sensing methods DInSAR was used in this study. By choosing two Sentinel 1A (Single Look Complex) descending datasets, dated 16/01/2020/01 and 28/01/2020/01 respectively (pre and post earthquake), the surface deformation and time series were determined. In addition, using the data obtained from the DInSAR results, Elastic Dislocation Modelling has been performed by applying linear and nonlinear inverse solutions to determine the slip amount of the fault structure, the fault surface slip distribution, and determine the strain area. According to the DInSAR results, while there is an offset of approximately 26 cm (away from the satellite direction) on the left block of the EAF, 19 cm offset (towards the satellite direction) are observed in the right block, respectively. Elastic Dislocation Modelling shows that the observed deformation pattern can be explained by the slip on a single plane fault of the Elazig earthquake. This fault plane was identified as a southwest strike-slip fault segment, which lies within the upper crustal region and extends to a depth of approximately 10 km. According to the results obtained by elastic modelling; slip amount (slip) was calculated as 1.95 m, Mw 6.75, rupture length 34.78 km, focal depth 10 km, width 7.4 km, strike 240.27°, slope 69.19°, rake 0.19°. Overall, the study reveals the strike-slip of the Sivrice-Elazığ earthquake, shows the deformation after the earthquake, and the elastic half-space fault model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.