Abstract
Dinotefuran, a third-generation neonicotinoid insecticide, is widely utilized in agriculture for pest control; however, its environmental consequences and risks to non-target organisms remain largely unknown. Bombyx mori is an economically important insect and a good toxic detector for environmental assessments. In this study, ultrastructure analysis showed that dinotefuran exposure caused an increase in autophagic vesicles in the silk gland. Dinotefuran exposure triggered elevated levels of oxidative stress in silk glands. Reactive oxygen species, oxidized glutathione disulfide, glutathione peroxidase, the activities of UDP glucuronosyl-transferase and carboxylesterase were induced in the middle silk gland, while malondialdehyde, reactive oxygen species, superoxide dismutase , oxidized glutathione disulfide were increased in the posterior silk gland. Global transcription patterns revealed the physiological responses were induced by dinotefuran. Dinotefuran exposure substantially induced the expression levels of many genes involved in the mTOR and PI3K - Akt signaling pathways in the middle silk gland, whereas many differentially expressed genes involved in fatty acid and pyrimidine metabolism were found in the posterior silk gland. Additionally, functional, ultrastructural, and transcriptomic analysis indicate that dinotefuran exposure induced an increase of autophagy in the silk gland. This study illuminates the toxicity effects of dinotefuran exposure on silkworms and provides new insights into the underlying molecular toxicity mechanisms of dinotefuran to nontarget organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.