Abstract

Abstract: Over the evolution of automobiles, performance, mileage, and grip have dramatically improved. Nevertheless, there have been some improvements, but now the ideal design has been reached for design of engine, airflow & tires, & ergonomics. This means that even very small design improvements could result in high performance enhancements. As fuel is becoming more expensive, the need for improved aerodynamics is becoming more acute. Thus, the purpose of this paper is to examine the effect of golf-like dimples on the aerodynamic properties of a spoiler. As such, numerical calculations and computational fluid dynamics calculations were performed to investigate the impact on aerodynamics and turbulence spoilers with various surface roughness and angle of attack. Based on the recorded data, this test will provide the best information on the appropriate size for the dimple. The data collected on the test model will be used to calculate the drag coefficient, the downforce, and the wake produced at 56 m/s speed, at four different attack angles. Different sizes & depths of dimples will be used to improve the aerodynamics of spoilers, which will improve their downforce, drag force and wake formation. Keywords: spoiler, aerodynamics, dimples, downforce, aerodynamic forces

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call