Abstract

The new diaminoacetylene (DAA) dimorpholinoacetylene (3) was prepared from 1,1-dimorpholinoethene (1) by bromination to form the dibromoketene aminal 2, which upon lithiation afforded 3 through a Fritsch-Buttenberg-Wiechell rearrangement. Heating 3 at elevated temperatures resulted in a complete conversion into the dimer 1,1,2,4-tetramorpholino-1-buten-3-yne (4), which was used for the synthesis of four-membered cyclic bent allene (CBA) transition-metal complexes of the type [(CBA)MLn ] (5-7; MLn =AuCl, RhCl(COD), RhCl(CO)2 ; CBA=1,3,4,4-tetramorpholino-1,2-cyclobutadiene; COD=1,5-cyclooctadiene). The reaction of 3 with tetraethylammonium bromide gave 1,2,3,4-tetramorpholinocyclobutenylium bromide (8), which reacted with bromine to form 1,2,3,4-tetra(morpholino)cyclobutenediylium bis(tribromide) (9). Compound 9 represents the first fully characterized compound containing a tetraaminocyclobutadiene dication and displays a nearly planar C4 N4 core as shown by X-ray diffraction analysis. Detailed quantum chemical calculations were performed to assess the aromaticity of tetraaminocyclubutadiene dications by employing the Nucleus Independent Chemical Shift (NICS) method and current density analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call