Abstract

ABSTRACT MicroRNAs (miRNAs) have already been documented to function in diabetic nephropathy (DN), yet little research has focused on the role of miR-98 in this disease. Here, we discuss the mechanism of miR-98 on the renal fibrosis in DN. Recombinant adeno-associated virus carrying miR-98 inhibitor or Nedd4L overexpression plasmid was injected into DN modeled rats to explore their roles in DN. Renal tubular epithelial cell injury models (NRK-52E cells) were induced by high glucose (HG). HG-treated NRK-52E cells were transfected with miR-98 inhibitor or Nedd4L overexpression plasmid for further verification. MiR-98 was upregulated, Nedd4L was downregulated and TGF-β/Smad2/3 signaling was activated in kidney tissues of DN rats and HG-treated NRK-52E cells. miR-98 targeted Nedd4L mRNA 3ʹUTR. MiR-98 depletion and Nedd4L overexpression inactivated TGF-β/Smad2/3 signaling pathway, alleviated pathological damage and fibrosis, ameliorated inflammation, and depressed cell apoptosis of kidney tissues of DN rats. MiR-98 depletion and Nedd4L overexpression inactivated TGF-β/Smad2/3 signaling pathway, strengthened viability, and limited apoptosis of HG-treated renal tubular epithelial cells. Nedd4L overexpression reversed the effect of up-regulating miR-98 on DN rats and HG-treated renal tubular epithelial cells. Altogether, we find that miR-98 is upregulated in kidney tissues of DN rats, and miR-98 diminution and Nedd4L elevation attenuate renal fibrosis through inactivation of the TGF-β/Smad2/3 pathway, which provides a novel therapy for DN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call