Abstract

ABSTRACT In this paper, we first extend the diminishing stepsize method for nonconvex constrained problems presented in F. Facchinei, V. Kungurtsev, L. Lampariello and G. Scutari [Ghost penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity, To appear on Math. Oper. Res. 2020. Available at https://arxiv.org/abs/1709.03384.] to deal with equality constraints and a nonsmooth objective function of composite type. We then consider the particular case in which the constraints are convex and satisfy a standard constraint qualification and show that in this setting the algorithm can be considerably simplified, reducing the computational burden of each iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.