Abstract
Atopic dermatitis results in diminished barrier function and altered production of antimicrobial peptides. Dendritic epidermal T cells (DETCs) play an important role in the wound repair and inflammation process. Our previous work identified an IL-4-dependent loss of DETCs in Stat6VT mice and in the MC903-induced skin inflammation mouse model. However, the mechanisms through which IL-4 mediates the loss of DETCs are unclear. In this study, we show that IL-4Rα germline knockout mice (Il4ra-/-) have increased DETCs, faster wound healing, and increased epidermal differentiation complex gene and fibronectin expression. The absence of IL-4Rα minimized the MC903-induced loss of DETCs, and reciprocal bone marrow chimera experiments in Il4ra-/- and wild-type mice demonstrated structural nonhematopoietic IL-4-responsive cell-mediated DETC homeostasis. Skin keratinocyte-derived IL-15 decreased dramatically in the MC903 model, while injection of IL-15 rescued DETC loss by promoting DETC proliferation and limiting apoptosis. Conditional deletion of IL-4Rα from keratinocytes using Il4rafl/fl K14-Cre mice showed an increase of DETCs, increased IL-15 production, and diminished skin inflammation following wounding. These results suggest that IL-4-dependent effects on DETCs in allergic skin inflammation are mediated by the IL-4Rα receptor of keratinocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.